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The effects of stiffness on the diffusion-limited dynamics of dumbbells in solution is 
studied numerically. The Langevin equation is used with two different models, the 
so-called Fraenkel and FENE dumbbells. It is found that the dynamics of rotation 
and stretching are dictated by the two following trends: (i) the density-density 
correlation function for these modes decays more slowly for larger values of the 
equilibrium distance between the two beads L (with the spring force constant K 
fixed), and (ii) it decays more quickly for increasing stiffness (with L fixed) making 
the bond stretching relaxation time 1" 2 smaller. For sufficiently stiff chains the value 
of 1" 2 becomes less than the delay time of the experimental correlator, resulting in a 
difference between the true and measurable first cumulants. 

I. INTRODUCTION 

In this paper a simple two-center molecule (dumbbell) 
is used to study the effect of stiffness on the dynamic 
scattering function or its initial slope, the first cumulant. 
The dumbbell is by no means a realistic model for a 
polymer molecule, but its simplicity and tractability in 
most analytical manipulations have made it an interesting 
subject. The dynamic scattering function S(q, t), i.e., the 
density-density time correlation function can be evaluated 
analytically in some limiting cases to be discussed below. 
Of special importance is its initial time derivative (first 
cumulant) referred to as either r(q) or O(q) in the 
literature.· Here the symbol r(q) will be used. S(q, t) in 
the limit of flexible dumbbell with a purely Gaussian 
potential has been known for a long time2 in the free 
draining case. If one looks at the dumbbell as the smallest 
ring polymer, preaveraged hydrodynamic interaction can 
also be included.3 The other limit in stiffness corresponds 
to the rigid dumbbell for which S(q, t) is also known.4 

The main goal of the present work is to investigate S(q, 
t) in situations of intermediate stiffness (between purely 
flexible and rigid). This is done by (numerically) simulating 
the Brownian motion of the dumbbell in solution with 
appropriate interbead potentials. Both the uFraenkel" 
dumbbellS potential 

(I) 

and the "finitely extendable nonlinear elastic" dumbbe1l6 

potential 

(2) 

are considered. In these expressions, r denotes the inter
monomer distance, with equilibrium value L, K plays the 
role of a spring force constant, and Ro is a parameter 
which restricts the extension of the FENE dumbbell to L 
- Ro < r < L + Ro. 

.) Present address: Research Reactor Facility, University of Missouri 
Columbia, Missouri 65211. ' 

Stiffness can be introduced by increasing the spring 
force constant K, which tends to constrain the motion of 
r to a smaller interval around r = L. This way of imposing 
"hard constraints" is physically realistic and allows us, in 
the limit of infinite K, to start from the equation of 
motion of a rigid rod. This approach is to be contrasted 
with imposing "flexible or soft constraints" in which case 
the equation of motion is solved in the full configuration 
space and constraints are imposed as the very last step. 
The results obtained by using these two approaches can 
be different, as has been pointed out by many au
thors.3.7- 9 

In the following section, we review the analytical 
forms of S(q, t) and 

r(q) = -lim dd In S(q, t) 
1--0 't 

in the cases of flexible and rigid dumbbells. We then 
discuss the Brownian dynamics simulation .program that 
solves the Langevin equation for the internal (intermon
orner distance r) motion. The external (center of mass) 
motion is decoupled (pure diffusion). 

II. DYNAMIC SCATTERING FUNCTION AND 
FIRST CUMULANT 

We consider a symmetric dumbbell consisting of 
two beads of equal friction constants r located at R. and 
R2, respectively. For convenience, the center of mass R 
= (R. + R2)/2 and relative r = R. - R2 coordinates are 
used. Coordinates corresponding to an asymmetric dumb
bell with different friction coefficients (r. 1= r2) could also 
be used. In this last case, one would define a center of 
friction [R = (r.R. + r2R2)f(r. + r2)] instead of the 
center of mass. Since this little generalization is irrelevant 
to the problem of stiffness, we will stay with r. = r2. The 
~ynamic scattering function S(q, t) = (p*(q)p(q, t»i-(R,r,I) 

IS the time correlation of the bead density p(q) 
= exp(iq· R)cos(q • r/2) and the brackets symbolize an 
ensemble average over all conformations of the dumbbell 
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represented by an equilibrium distribution ~R, r, t). If 
the separability !feR, r, t) = !feR, t)!f(r, t) is anticipated 
(i.e., if external and internal motions are decoupJed), S(q, 
t) becomes 

S(q, t) = (exp{iq· [R(t) - Ro]})~R.t) 

X (cos(q. ro/2)cos[q· r(t)/2])~r.t). (3a) 

The motion of the center of mass is a pure diffusion with 
distribution 

!feR, tiRo) = (I/21rD",t)3/2 exp[-(R - Ro)2/2Dmt], 

(Dm being the diffusion coefficient of each bead). The first 
ensemble average in S(q, t) [hereafter noted SE(q, t)] can 
therefore be performed to yield: 

SE(q, t) = (exp{iq. [R(t) - RoJ} )~R.t) 

whose solution was obtained by Uhlenbeck and Orstein2 

as 

[ 
3K J3/2 

~r, tiro) = 21r(l _ e-l2KDnI) 

(8) 

With this solution, and the use of an initial distribution 

!f(ro) = (3K/21r)3/2 exp[-3Kr5/2], (9) 

the ensemble average involved in oSJ(q, t) can be per
formed and yields 

oSI(q, t) = exp[-q2/12K] 

X [cosh(q2e-6KD",t/12K) - 1], (10) 

(3b) which when normalized to one is denoted 

The effect of preaveraged hydrodynamic interaction is to 
rescale time as 3 t - (1 + B)t, where B is the draining 
parameter. In order to perform the second ensemble 
average, 

Sl(q, t) = (cos(q. ro/2)cos[q· r(t)/21)~r.t)' (3c) 

the Langevin equation describing the internal r motion 
is solved. Actually, we are interested in the fluctuations 
from the equilibrium value, i.e., 

OSI(q, t) = S/(q, t) - Sl(q, (0) 

= (cos(q· ro/2)cos[q· r(t)/2]) 

- (cos(q·ro/2»(cos[q·r(t)/21). (3d) 

A. Analytical solutions 

In this section, we briefly review a few well known 
analytical results which will be valuable in testing our 
numerical simulations. 

A flexible dumbbell with a Gaussian potential U?(r) 
= 3kB TKr2/2 is first considered. The parameter K is 
usually written as l/b2 where ~ = (r2

). Each bead obeys 
a Langevin equation: 

rdRt/dt + au/aRI = FJ, 

(4) 

where inertial effects have been neglected. The relative 
motion obeys also a Langevin equation, 

rdr/dl + 2aU/1Jr = f. (5) 

The random force f = F 1 - F 2 is assumed to be a 
Gaussian process that obeys 

(f(t» = 0, 

(f(/I)f(t2» = I4Dmo(t1 - (2)r2. (6) 

A Smoluchovski equation for the conditional distribution 
!fer, tiro) can therefore be obtained, 

~r, Ilro)/al = 2Dm [(J2/1Jr2 + 0(3Kr)/lJrl!f(r, tiro), 
(7) 

osf.v(q, t) = OSI(q, 1)/oSI(q, 0). 

The effect of preaveraged hydrodynamic interaction can 
be introduced here also by rescaling time but with the 
other Zimm eigenvalue,3 i.e., t - (I - B)I where B = rt 
71ob1r w;:; and 710 is the solvent viscosity. 

The first cumulant is the sum r(q) = rE(q) + r/(q) 
of a translational part r E = q2Dm/2 and of a part which 
described relaxation of stretching modes, 

rl(q) = (q2Dm/2)sinh(q2/12K)/[cosh(q2/12K) - I]. 

(11) 

In the case of a rigid dumbbell (r = L), Sl(q, I) has 
been derived by Pecora.1O In this case besides the overall 
translational diffusion, there is a rotational diffusion 
around the center of mass. The distribution function for 
the rotational motion obeys ~O, t)/at = ]28!f(O, I) where 
/2 is the angular momentum operator and 8 = 2Dm/L2 
is the rotatory diffusion coefficient. Pecora lO gives 

Sl(q, t) = L (21 + l)e-I(I+ l)8tH(qL/2), (12) 
, even 

where j, is the spherical Bessel functions. 
The "internal" part of the first cumulant for a rigid 

dumbbell follows straightforwardlylo: 

rl(q) = L (21 + 1)/(1 + l)8jT(qL/2)/ 
, even 

L ~n (21 + l)jT(qL/2) - j5(qL/2)] , 

and can be simplified further to read3 

r/(q) = q2Dm[I/3 - jl(qL)/qLJ/ 

[I + jo(qL) - 2j5(qL/2)]. 

(13) 

(14) 

This result was obtained by Pecora 10 when rigid constraints 
are imposed on the dumbbell. Another form for the first 
cumulant (case of flexible constraints) is worth recalling 
at this point. Akcasu, Benmouna, and Han3 restricted the 
freely jointed chain result to a dumbbell to obtain for the 
internal part of r(q): 
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rl(q) = q2Dm[l - jo(qL»)/ 

[1 + jo(qL) - 2j5(qL/2)]. (15) 

The difference between these two results has been discussed 
elsewhere3•

9 and is presented in Fig. 1. We notice that for 
both of these cases the limiting values ofrI(q) are reached 
at long distances through an oscillatory behavior. 

Stockmayer and Burchard9 have considered a situa
tion of intermediate stiffness near the rod limit. They 
used the Fraenkel dumbbell potential which allows for 
small stretching deviations ~ = r - L of root mean square 
y(e) ~ L. In this case, the angular distribution 1/t(0, 
(100 ) is the same as in the rigid dumbbell case, the radial 
distribution is the one-dimensional version of Eq. (8), 
i.e., 

1/1(~, 11~0) = [3K/211"(I - e- l2KD".t»'/2 

X exp[-3K(~ - ~oe-6KD".tf/2(1 - e-l2KD~), (16) 

and the initial distributions are chosen as follows: 

1/1(00 ) = 1/411", 

1/I(~0) = (3K/211")l/2 exp[-3K~5/2). 
(17) 

Using expansions of cos(q· r/2) and cos(q· ro/2) in terms 
of spherical harmonics and spherical Bessel functions the 
following formula can be derived: 

Sl(q, I) = ~ (21 + I)exp[-/(I + 1)8/) 
I even 

(18) 

j~S)(qL/2) is used to represent dSj/m/d~s taken at ~ = qL/ 
2. This formula was first derived by Stockmayer and 
Burchard9 in the limit b ~ L. 

In this last case, the first cumulant contains both the 
translational and rotational parts and, as discussed by 
these authors,9 it also contains a contribution from 
stretching if the rigid limit is taken as the very last step. 

At this point, we should emphasize that for this 

2 

1.5 

.5 

ql 

FIG. I. Represents the behaviors shown (1) by Eq. (14) and (2) by Eq. 
(15). 

model (Fraenkel dumbbell) stretchings should be restricted 
to y(e) ~ L for Eq. (17) to hold. The FENE potential 
on the other hand, allows for any degree of stiffness 
provided the other parameter Ro is kept smaller than L. 
Unfortunately, the complexity in the use of this potential 
prohibits analytical attempts. 

B. Numerical simulation 

In this section, we describe the Brownian dynamics 
simulation program used to study stiff dumbbells. Since 
the diffusion of the center of mass is decoupled: 

[sn(q, I) = exp(-q2Dmt/2»), 

we focus our efforts on the internal motions, i.e., on the 
behavior of 

Sl(q, I) = (cos(q· ro/2)cos[q· r(/)/2).p(r,t). 

Our aim is to solve the Langevin equation: 

tdr/dl + 2aU/itr = f, 

where f is a Gaussian stochastic process that satisfies Eq. 
(6). The finite difference equation reads 

r(1 + at) = r(/) - (2/t)iJU/itral + F(a/)/t, (19a) 

where a new random process has been defined, 

L
41 

F(a/) = 0 dtf(/), 

with the assumption that the potential term au/itr is a 
slowly varying function of time compared to f(/). F(at) is 
a Gaussian process itselfll with a variance of 4Dmt2 at. 
Forms other than Eq. (I9a) are also available. '2 It is more 
convenient to redefine time as i = Dml so that the finite 
difference equation becomes 

r(i + ai) = r(i) - (2/kBT)iJU/itral + FY4ar, (19b) 

where F has been replaced by the rescaled F = F / 
Y4t2ar which has a Gaussian distribution of variance 
unity. This last equation is the starting point of the 
simulation program. 

A set of random forces F, for each realization, 
and a set of random initial values ro with distribution 
1/I(ro) are needed. Once the different histories r(i) have 
been generated, an arithmetic average of cos(q· ro/ 
2)cos[q • r(i)/2) over all these realizations yields Sl(q, i). 
A subtraction of the equilibrium part and normalization 
to one gives osf..,(q, i). 

III. DISCUSSIONS 

Dynamics of a dumbbell with intermediate stiffness 
have been studied in order to make some inferences as 
to the effect of stiffness on the dynamics of macromolecules 
in solution. In a set of figures we report on the overall 
"scenario" of the changes in osf..,(q, i) when either the 
stiffness K or the length L are changed. 

Figure 2 represents the analytically soluble case of a 
Gaussian dumbbell and reproduces the results presented 
in Eq. (10) for oSf..,(q, i) and in Eq. (11) for r/(q). An 
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AG. 2. Case of Fraenkel potential with q = 1 and L = 0 (Gaussian 
limit) for increasing values of K: (I) K = 0.005, (2) K = 0.05, (3) 
K = 0.1, and (4) K = 0.5. 

increase in stiffness yields a decrease in the stretching 
relaxation time TS = l/r1

, bearing in mind that rl 
~ q2Dm/2. This behavior is expected to hold for flexible 
macromolecules. 

In Fig. 3, we have also reproduced the other analyt
ically soluble case of a rigid dumbbell quite closely with 
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AG. 3. Case of Fraenkel potential with q = 1 and K = 5 (practically at 
the rod limit) for increasing values of L: (I) L = 2, (2) L = 8, (3) 
L = 11, and (4) L = 30. 
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AG. 4. Case of Fraenkel potential with q = 1 and L = 2 for (I) 
K = 0.005, (2) K = 0.05, (3) K = 0.1, (4) K = 0.5, and (5) K = 5. 
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AG. 5. Case of Fraenkel potential with q = 1 and L = 30 for (I) 
K = 0.005, (2) K = 0.05, (3) K = 0.1, (4) K = 0.5, and (5) 
K= 5. 

K = 5 which gives us even more confidence in the 
program itself. An increase in L results in a decrease in 
rl(q) as in Eq. (14) but not monotonously, rather through 
oscillations [(as shown in Fig. (1») to reach the asymptotic 
value of rl(q) = q2Dm/3. This trend also holds for rod
like macromolecules but the asymptotic value l3

-
15 [rl(q) 

= q2L2()/12 for isotropic diffusion) is reached smoothly. 
Figures 4 and 5 show situations of intermediate 

stiffness. Fixing the length L fixes the upper curve for 
~Sfv(q, t) to which other curves corresponding to increasing 
degrees of stiffness tend . 

To make a better contact with the case of macro
molecules, it is more convenient to define a general 
stiffness parameter, a = (3/2)[5/3 - (,4)/(,2/), which 
varies between zero (Gaussian limit) and one (rigid limit) 
instead of the simple minded spring force constant K . 
Two relaxation times, TI = (,2) and T2 = I/K, can also 
be introduced. These relaxation times coalesce in the 
Gaussian limit and are split into a rotational (TI = L2) 
and a stretching (T2 = 0) relaxation time in the rigid 
limit. For convenience, we redefine TI = T.;(,2) equal to 
unity and T2 = T2/(,2) varies between zero and one when 
a increases as shown in Fig. 6. Note that the curvature 
of the T2 behavior could not have been predicted analyt-
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AG. 6. Relaxation times 1'1 and 1'2 for increasing stiffness between the 
Gaussian dumbbell value u = 0 and the rigid dumbbell value u = 1. 
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FIG. 7. Case of FENE potential with q = I and J4 = 5 for (I) K 
= 0.005, (2) K = 0.05, (3) K = 0.1, and (4) K = 0.5. 

ically. Ifwe arbitrarily set a delay time for the experimental 
correlator equal to 0.171. we see from Fig. 6 that for 
values (1 ~ 0.8, what is measured as the initial slope 
corresponds to 72 = 0.1 instead of the real value which 
may even be zero; in other words the steep initial decay 
of ~S~(q, t) has been missed and the measured first 
cumulant is found to be smaller than the true one. Note 
also that in situations where T2 and TI can be unambig
uously extracted from ~S~(q, t) their ratio yields a value 
for (1 (from Fig. 6) and therefore, an estimate of (r2) 
and (r4

). 

The FENE potential has been used to plot Fig. 7 
which shows that a finite value of the parameter Ro acts 
as a kind of stiffness also. Its effect is to move ~S~(q, t) 
curves downward in cases where Ro -s;; b and has no effect 
in cases where Ro ~ b. We did not consider an extension 
of the FENE potential with a finite equilibrium length L 
as 

since the generation of the initial distribution I/I(ro) in this 
case cannot be done directly (it would involve numerical 
integrations) . 

The dynamics of semiflexible macromolecules in 
solution are a lot more complicated than this simplified 
dumbbell problem where anisotropy in the diffusion, 
bending modes, hydrodynamic interaction, excluded vol
ume effects, etc. cannot be easily and/or realistically 
included . 
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